Numerical problem on

First law of Thermodynamics

QUESTION:

1 kg of water at 373 K is converted into steam at the same temperature. The volume of 1 cm^3 of water becomes 1,671 cm^3 on boiling. Calculate change in the internal energy of the system, if heat of vaporization is 540 cal g^{-1} . Given that standard atmospheric pressure = 1.013 imes $10^5 \text{ N}m^{-2}$.

SOLUTION:

Given:

Standard atmospheric pressure, $P = 1.013 \times 10^5 Nm^{-2}$ Volume of water = 1 cm³ And volume of steam = 1,671 cm³ Therefore, increase in volume, $dV = 1,671-1=1,670 cm^3$ $= 1.67 \times 10^{-3} m^3$ If we assume that the expansion occurs at the constant atmospheric pressure, then external work done,

> dW =P dV = $1.013 \times 10^5 \times 1.67 \times 10^{-3}$ J = 169.17 J

Now, mass of water, m = 1g; Latent heat of vaporisation for water, L = 540 cal g^{-1}

Therefore, heat absorbed by water, dQ = mL $= 1 \times 540$ cal

- = 540×4.2 J
- = 2268 J

According to the first law of thermodynamics, dQ = dU+dW ∴ dU = dQ - dW = 2268-169.17 = 2,098.83 J

A CIET NCERT PRESENTATION