Numerical problem on

First law of Thermodynamics

QUESTION:

1 kg of water at 373 K is converted into steam at the same temperature. The volume of $1 \mathrm{~cm}^{3}$ of water becomes 1,671 cm^{3} on boiling. Calculate change in the internal energy of the system, if heat of vaporization is 540 cal g^{-1}. Given that standard atmospheric pressure $=1.013 \times$ $10^{5} \mathrm{Nm}^{-2}$.

SOLUTION:

Given:

Standard atmospheric pressure,

$$
P=1.013 \times 10^{5} \mathrm{Nm}^{-2}
$$

Volume of water $=1 \mathrm{~cm}^{3}$
And volume of steam $=1,671 \mathrm{~cm}^{3}$
Therefore, increase in volume,

$$
\begin{aligned}
\mathrm{dV} & =1,671-1=1,670 \mathrm{~cm}^{3} \\
& =1.67 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

If we assume that the expansion occurs at the constant atmospheric pressure, then external work done,

$$
\begin{aligned}
\mathrm{dW} & =\mathrm{PdV} \\
& =1.013 \times 10^{5} \times 1.67 \times 10^{-3} \mathrm{~J} \\
& =169.17 \mathrm{~J}
\end{aligned}
$$

Now, mass of water, m = 1g;
Latent heat of vaporisation for water,

$$
\mathrm{L}=540 \mathrm{cal} g^{-1}
$$

Therefore, heat absorbed by water,

$$
\begin{aligned}
\mathrm{dQ} & =\mathrm{mL} \\
& =1 \times 540 \mathrm{cal} \\
& =540 \times 4.2 \mathrm{~J} \\
& =2268 \mathrm{~J}
\end{aligned}
$$

According to the first law of thermodynamics,

$$
\begin{aligned}
d Q & =d U+d W \\
d U & =d Q-d W \\
& =2268-169.17 \\
& =2,098.83 \mathrm{~J}
\end{aligned}
$$

A
 CIET
 NCERT

PRESENTATION

